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Introduction: 
• Overview of X-FEM algorithms for interface 

reconstruction and remapping 
• Development of the van Leer interpolation for remap 
• Demonstrate with a verification problem 
• Conclusion and future directions 
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X-FEM Overview: 
• X-FEM is part of Alegra 

•  Selected through input deck 
•  Voth’s clever implementation allows hydro/strength 

algorithms to be shared 
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Non-XFEM element 
and 
X-FEM parent element 

X-FEM child elements 

Important extra node: 
 - divides face for ‘neighbor material’ correspondence 
 - allows more accurate contact behavior 
 - can produce non-convex material perimeter 



X-­‐F	
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Remapping algorithm: 
•  2D Design choices: swept face or intersection remap 
•  Swept face 

•  Originally unclear how to implement 
•  Due to two directional sweeps (2D), increased dissipation 
•  Possible lower fidelity due to approximations 

•  Intersection remap: 
•  Based upon Dukowicz1 and Ramshaw2 (without node coordinate 

randomization) 
•  Much more complex algorithm 
•  Each material is remapped individually 
•  Able to remap non-convex material 

polygons 
•  More expensive than swept remap 

Remapping two material donor 
element onto its neighbors 

[1] J.K. Dukowicz, Conservative Rezoning (remapping) for general quadrilateral 
meshes, J. Comput. Phys., 54 (1984), pp. 411 – 412, 
[2] J.D. Ramshaw, Conservative Rezoning  Algorithm for generalized Two-Dimensional 
Meshes, J. Comput. Phys, 59 (1985), pp. 193-199. 
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Interface Reconstruction: 

•  Patterned Interface Reconstruction (PIR) 
•  Based upon Youngs’ algorithm 
•  PIR works in physical space (as opposed to unit-cube) 
•  Provides a conservative material description 
•  Keeps ‘neighboring material’ connections for the contact 
•  Manual priorities with enhanced material placement (materials 

aren’t required to use onion-skin).  
•  Automatic priorities (see R. Kramer’s talk) 
•  Polygonal element and material description 

guarantees non-crossing interfaces 
•  Interface smoothing is rarely used   
•  Adds interface segments (2D) or polygons (3D) to 

give C0 continuous interface description for contact 
and DSD  

Whipple Shield 
calculation with Alegra 
X-FEM illustrating 
multiple occurrences of  
void material in fixed 
priority order 
reconstruction 

Reconstructed 
interfaces of 3D bar 
showing addition of  C0 
polygons (skinning) 



Mul7ple	
  Dimensional	
  MUSCL	
  algorithm	
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•  Many similar efforts  at extending MUSCL have occurred 
•  MUSCL1 concepts: 

•  Uses a Taylor Series expansion to represent the distribution of 
conserved scalar quantities over a donor element 

•  Commonly uses only 2nd order terms or 3rd order Taylor series (all 
terms above) 

•  The distribution function is integrated over the intersection 
elements 

[1]  B. van Leer, Towards the Ultimate Conservative Difference Scheme, V. A second-order sequel to Godunov’s Method, 
J. Comput. Phys., 32 (1979), pp. 101-136. 
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Achieving	
  monotonicity	
  

•  Monotonicity (create no new maxima or minima in 
the distribution): 

     If                         : 
     else                      :  

 this says that the extrapolated function is 
 bounded by the home and neighbor values of F 

•  When multiple dimensional Taylor series is used, 
usually the number of neighbors overdetermines 
the values of the derivatives 

Fhome 
F1 

F0 

F2 

F3 

F4 
F5 

F7 

•  Use an ‘optimization’ algorithm to achieve a solution. 
•  Implement the monontonicity conditions as constraints 
•  The objective function will be how well does the extrapolated value 

approximate all the neighbors 
•  We will use a linear programming algorithm to solve the problem in each 

donor element (lp_solve 5.5 for now) 
•  Linear programming evenly weights the neighbors (whereas least-

squares more heavily weights the ill-fitted neighbors) 
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Algebra	
  of	
  monotonicity	
  

•  How are the constraints implemented? 
 for example:                        :  
•  First constraint for neighbor  

•  Second constraint for neighbor  
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Unoccupied	
  Neighbors?	
  

Fhome 
F1 

F0 

F2 

F3 

F4 
F5 

F7 

•  Require four occupied neighbors for 3rd order 
algorithm and three occupied neighbors for 2nd 
order 

•  If this number of neighbors isn’t present, lower 
algorithm in home element by one order 

•  If there are enough neighbors, two options (user 
input): 

? 

•  Allow extrapolated derivatives: omit constraints for this neighbor and 
allow the other neighbors to determine the distribution 

•  The algorithm can create a new maximum or minimum but it is 
usually ‘reasonable’ 

•  Deny extrapolated derivatives in direction of missing neighbors: 
•  Implemented by using value of Fhome for missing Fn 
•  In plots it appears as a ‘ledge’ around the material boundary 
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Displacements	
  used	
  in	
  constraints	
  

Fhome 
F1 

F0 

F2 

F3 

F4 
F5 

F7 

𝛻F F 

•  Constraints can be ‘excessively limiting’ 
•  An example is when two ‘opposite’ 

neighbors have very small differences with 
Fhome and the dot product of the 
displacements aren’t near 1: 

 

Ngbr1 constraints Ngbr3 constraints combined constraints 

F

home

� F

ext

� F1

F1 = F

home

� ✏

~

X1 � ~

X

home

= (�x)̂i+ (�y � �)ĵ
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Displacements	
  used	
  in	
  constraints	
  

Fhome 
F1 

F0 

F2 

F3 

F4 
F5 

F7 

𝛻F F 

•  Excessive limiting is caused by opposite 
constraints ‘folding into’ the gradient and 
hessian. 

•  To minimize this tendency: use displacement 
vector from home centroid to mid-edge 
coordinate or nodal coordinate. (remember 
these coordinates are evaluated after the 
Lagrangian step. Element is probably in a 
deformed configuration.)  

•  To minimize excessive limiting we ‘diagonalize’ 
the displacements of opposite neighbors (define 
opposite displacements by vector between 
neighbors) 

 
 

d̂ =
~X1 � ~X3

| ~X1 � ~X3|
~d1 = | ~X1 � ~Xc|d̂
~d3 = �| ~X3 � ~Xc|d̂
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Displacements	
  used	
  in	
  constraints	
  

•  Observation: constraints tend to be overly restrictive in many situations. 
Distributions will revert to 1st order when a monotonic 2nd or 3rd order 
distribution is visibly feasible 

•  Observation: gradient values tend to be lower than observed average 
gradient and Hessian values tend to be larger 
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Addi7onal	
  3rd	
  order	
  constraint	
  

•  Require that the gradient at the center of home element dotted with the 
gradient at each neighbor is >= 0 

•  This ensures that a maxima or minima doesn’t occur between home 
centroid and neighbor 

•  Constraint: 
 
•  Where: 
 
 
•  To preserve the linearity of the constraint we evaluate an average gradient 

and use it: 
    Fx Fx + Fy Fy + dx Fx Fxx + (dx Fy + dy Fx) Fxy + dy Fy Fyy >= 0 

Grad(Fn)*Grad(Fhome) >= 0 

Grad(Fn) = (Fx + dx Fxx + dy Fxy) i + (Fy + dy Fyy + dx Fxy) j  
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Calcula7ng	
  an	
  average	
  gradient	
  	
  

•  Use Dukowicz and Kodis’ surface integral 
algorithm  

•  Accurate for distorted meshes 
•  Start with gradient around each home node 
•  Each line segment extends from element 

centroid to an edge midpoint 
•  Grad(F) = Sum(F*segment area) / volume 

inside polygon 

home 

•  Avg Grad(F) = Sum(nodal Grad(F) *nodal volume) / Sum(nodal volume) 

→
𝐴
┬
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Calcula7ng	
  an	
  average	
  hessian	
  	
  

•  Use Dukowicz and Kodis’ surface integral 
algorithm again  

•  Compute the gradient of each component of 
the nodal gradients 

•  Fxx = grad(Fx) * i 
•  Fyy = grad(Fy) * j 
•  Fxy = grad(Fx) * i + grad(Fy) * j 

home 
A

Fx,Fy 
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Final	
  monotonicity	
  constraint	
  	
  

•  Magnitudes of gradient and hessian can be too large 
•  FxFx + FyFy<= FxFx + FxFx 
•  FxxFxx + FxyFxy + FyyFyy <= FxxFxx + FxyFxy + FyyFyy 
Where bold italics derivatives are the components of the average gradient 
and hessian 
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Objec7ve	
  func7on	
  	
  

•  A linear function which measures how close the extrapolated value is to 
each neighbor value 

•  Each occupied neighbor contributes to the objective function: 
If Fhome >= Fn 
Obj += Fext – Fn 
       += Fhome + dx Fx + dy Fy + dxdx Fxx + dxdy Fxy + dydy Fy – Fn 
       += dx Fx + dy Fy + dxdx Fxx + dxdy Fxy + dydy Fyy + Fhome – Fn 

•  Due to monotonicity constraints, Fhome >= Fext >= Fn, this can’t go negative 
If Fhome < Fn 
Obj += Fn – Fext 
       += Fn - Fhome - dx Fx - dy Fy - dxdx Fxx - dxdy Fxy - dydy Fy 
        -= dx Fx + dy Fy + dxdx Fxx + dxdy Fxy + dydy Fyy + Fhome – Fn 

•  Constants are dropped 
•  Each neighbor’s objective contribution is weighted by abs(Fhome – Fn) 
•  Minimize the objective 
•  Alternate objective functions 



Lin	
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Linear	
  programming	
  formula7on	
  	
  

•  The constraints and the objective function must be linear in the unknowns 
•  The null solution (Fx=Fy=Fxx=Fxy=Fyy=0) must be a valid solution 
•  Allow negative solutions (ie Fx < 0) by describing each unknown by two 

variables: Fx = Fx
+ – Fx

- 

•  Only one of the two variables will be non-zero. 
•  For a  3rd order 2D element with 8 occupied neighbors: 

•  There will be 1 objective function 
•  There will be 10 unknowns 
•  There will be 3 constraints per neighbor (24 neighbor constraints) 
•  There will be 2 global constraints (magnitude of grad and magnitude of 

hessian) 
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•  For 2nd order distributions, there are no conservation terms 
•  For 3rd order distributions, after having determined the grad and hessian, 

we scale the distribution to conserve. For example, the density of an 
element times the material volume must equal the integral of the 3rd order 
distribution over the donor material polygon: 

•  Vxx = [(1/2) volume integral( dx dx ) over material polygon]/mat volume 
•  Vxy = [volume integral( dx dy ) over material polygon ]/mat volume 
•  Vyy = [(1/2) volume integral( dy dy ) over material polygon ]/mat volume 

•  This distribution is integrated over each intersection polygon: 
•  Delta F = Fhome – (Fxx(Vxx) + Fxy(Vxy) + Fyy(Vyy))Volint + 
                     Fx volume integral(dx) + Fy volume integral(dy) + 
                     Fxx volume integral(dx dx/2) + Fxy volume integral (dx dy) + 
                     Fyy volume integral (dy dy/2) 
•  Several quantities are usually remapped; hence, evaluation and storage of 

intersection polygon integrals is economical 

 

Conserva7on	
  terms	
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Verifica7on	
  problem	
  	
  

•  Rider’s 2D distorting circle with a cosine shaped density distribution and a 
prescribed velocity 

•  The problem starts undeformed, it moves and distorts through 90 degrees 
and then reverses to return to its initial configuration 

•  Perfect solution would have no difference between starting and ending 
density distribution 

•  Show movies of 1st order, 2nd order, and 3rd order 
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Verifica7on	
  problem	
  1st	
  order	
  144	
  elements	
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Verifica7on	
  problem	
  1st	
  order	
  144	
  elements	
  

Start time Reverse direction End time 
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Verifica7on	
  problem	
  2nd	
  order	
  144	
  elements	
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Verifica7on	
  problem	
  2nd	
  order	
  144	
  elements	
  

Start time Reverse direction End time 
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Verifica7on	
  problem	
  3rd	
  order	
  144	
  elements	
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Verifica7on	
  problem	
  3rd	
  order	
  144	
  elements	
  

Start time Reverse direction End time 
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Conclusions	
  and	
  future	
  direc7ons	
  	
  

•  Demonstrated a variable (1st, 2nd, and 3rd order), 
monotonic, conservative, multi-dimensional remapping 
algorithm 

•  Algorithm is still under development and testing 
•  Compare multi-dimensional results with standard one-

dimensional interpolation for alternating direction, swept 
volume remap 


